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Introduction. The term “spectrum” was introduced by Isaac Newton, who (later
Master of the Mint) coined it to describe the colored lights which his prism
had shown to be latently present—like ghostly spectres—in white light. The
term radiated metaphorically throughout the language, but the usage that will
concern us today is an apple that fell not far from the tree.

Quantum theory began as theory of thermalized light. It became quantum
mechanics when Bohr () described the Bohr atom, a mechanical structure
intended to account for the hydrogen spectrum and, by extension, to lay the
foundation for a general theory of atomic and molecular spectra. Bohr’s striking
success simulated theorists to play variations on Bohr’s theme, in an effort to
explain the small spectral adjustments which were observed to take place when
atoms are subjected to various perturbations (Stark effect, Zeeman effect), and
to account for certain subtlties evident in the spectroscopic data (spectral line
shape).

A dozen years separate the work of Planck from that of Bohr. By the
end of a second dozen years it had become evident to Heisenberg (who was
twenty-four in ) that the characteristic energies En = hνn of atoms can
be identified with characteristic numbers sequestered in the design of certain
multi-component objects which Born recognized to be “matrices.” Schrödinger,
in , published under the title “Quantization as an eigenvalue problem” a
series of four papers1 which took as their analytical method not matrix theory
but the theory of differential equations (Sturm-Liouville theory), but it was clear
to Schrödinger—and demonstrated in a paper which he inserted between Parts
II & III of his main series—that “matrix mechanics” and “wave mechanics” are
the same guy in different costumes. We are therefore not surprised, when we

1 English translations of those and other classic papers have been reprinted
in E. Schrödinger, Collected Papers on Wave Mechanics ().
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look back at the historical record, to discover that in his “Part III: Perturbation
theory, with application to the Stark effect of the Balmer series”—where he
describes the “time-independent perturbation theory” which has been
reproduced in a thousand textbooks—Schrödinger adopts a distinctly matrix-
theoretic mode of expression.

The time-independent Schrödinger equation, written in the abstracted
notation devised by Dirac to achieve unification of the Heisenberg/Schrödinger
theories, reads

H |ψ) = E|ψ) (1.1)

and with respect to any specified basis
{
|n)

}
acquires the representation

∑
(m|H |n)(n|ψ) = (m|ψ) abbreviated Hψψψ = Eψψψ (1.2)

This coupled system of linear equations admits of non-trivial solution if and
only if E is a root of the characteristic polynomial

det(H − E I ) = 0 (2)

The theory constructed by Schrödinger is a fully articulated creation that
permits one to pose and attack a rich variety of ancillary questions, so we
must look upon (2) as but an isolated detail within a theoretical tapestry. But
in that detail Schrödinger made good his promise to present “quantization as
an eigenvalue problem.” Left in the dust—perceptible now only in blurred
outline—is Bohr’s original image of quantum mechanics as “classical mechanics
adorned with an � -dependent principle of orbital inclusion/exclusion,” an image
which had inspired a decade of work, but to which Heisenberg particularly had
taken profound exception.

We have interest in an instance of the “perturbation problem” which is
very easily stated: Assume the eigenvalues

{
E 0

1 , E
0
2 , . . .

}
—collectively, the

“spectrum”—of H0 to be known. Subject H0 to some specified perturbation:

H0 −→ H = H0 + λV

Describe the induced adjustment
{
E 0

1 , E
0
2 , . . .

}
−→

{
E1, E2, . . .

}
of the spectrum. In the next section I sketch and criticize the method standardly
brought to bear on the problem. I turn then to description of a method which
is computationally much more efficient.

Computational inefficiency of the Rayleigh-Schrödinger method. Schrödinger
works not from (2) but from (1). He takes both the unperturbed eigenvalues{
E 0

n

}
and the normalized unperturbed eigenvectors

{
|n0)

}
to be known

H0|n0) = E 0
n |n0)
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and seeks to develop the perturbed eigenvalues/eigenvectors as power series in
the dimensionless parameter λ that controls the strength of the perturbation:

(H0 + λV)
{
|n0) + λ|n1) + λ2|n2) + · · ·

}
=

{
E 0

n + λE 1
n + λ2E 2

n + · · ·
}{

|n0) + λ|n1) + λ2|n2) + · · ·
}

Termwise identification gives

H0|n0) = E 0
n |n0) (3.0)

H0|n1) + V |n0) = E 0
n |n1) + E 1

n |n0) (3.1)
H0|n2) + V |n1) = E 0

n |n2) + E 1
n |n1) + E 2

n |n0) (3.2)
H0|n3) + V |n2) = E 0

n |n3) + E 1
n |n2) + E 2

n |n1) + E 3
n |n0) (3.3)

...

The program—which had been employed already by Lord Rayleigh (–)
in his Theory of Sound (), and makes essential use of the orthonormality of
the unperturbed eigenvectors—calls for solving (3) serially. Hit (n0| onto (3.1)
and obtain

E 1
n = (n0|V |n0) (4.1)

which can be brought to all subsequent equations.

But before one can advance to (3.2) in quest of E 2
n one must extract from

(3.1) a description of |n1), and it is at this point that the Rayleigh-Schrödinger
scheme begins to bog down. It emerges2 that one must
• distinguish cases in which E 0

n is non-degenerate from
• cases in which E 0

n is degenerate
and that even in the more favorable latter case the best one can achieve is

|n1) =
∑
m�=n

|m0)
(m0|V |n0)
E 0

n − E 0
m

+ (undetermined coefficient) · |n0)

so must still devise some satisfactory method for managing the “undetermined
coefficient.” Moreover, |n0) + λ|n1) becomes an acceptable approximation to
the perturbed eigenvector |n) only after it has been normalized , which is easy
in principle, but introduces an added layer of complexity. When those hurdles
have been cleared, one obtains

E 2
n =

∑
m�=n

(n0|V |m0)(m0|V |n0)
E 0

n − E 0
m

(4.2)

Prior to any attempt to compute the 3rd-order correction terms E 3
n one must

acquire a description of |n2), and that effort leads even deeper into the bog.
Various attempts have been made to bring a manageable degree of pattern to
heavy calculation implicit in (3).3

2 See, for example, Griffiths’ Introduction to Quantum Mechanics (),
§6.1.2.

3 Several of those attempts are reviewed in my quantum perturbations
(). Or see, for example, §11.2 in Powell & Crassmann; Chapter XVI §15
in Massiah; Chapter 17 §3 in Merzbacher’s 2nd edition.
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My basic criticism of the Rayleigh-Schrödinger method, in all of its variant
formulations, is that to obtain a description of the pth-order correction to E 0

n

it obligates one to compute
{
|n1), |n2), . . . , |np−1)

}
, even if one has no physical

interest in the latter information. And that, for p > 2, requires great effort,
even in the non-degenerate case.

Introduction to the determinantal method. Far better, I argue, to proceed directly
from (2); i.e., from the statement

det ‖(m0|H0 + λV − E I |n0)‖ = 0 (5)

which asks us to
• evaluate a determinant
• discover the roots of the resulting “characteristic polynomial.”4

Both assignments become more daunting as the dimension N of the matrix
(order of the characteristic polynomial) increases, but both, as I will show, can
be managed so as to remain quite tractable even in the limit N → ∞.

Look, by way of introduction, to the case N = 2. We agree to write

‖(m0|H0−E I |n0)‖ = H
0−E I =

(
E0

1 − E 0
0 E0

2 − E

)

‖(m0|λV |n0)‖ = λV = λ

(
V1 U∗

U V2

)

Then5

det(H
0 + λV − E I)

= E2 −
[
(E0

1 + λV1) + (E0
2 + λV2)

]
E +

[
(E0

1 + λV1) · (E0
2 + λV2) − λ2U∗U

]
= 0 (6)

can be solved in closed form to give

E = 1
2

{[
(E0

1 + λV1) + (E0
2 + λV2)

]
(7)

±
√[

(E0
1 + λV1) − (E0

2 + λV2)
]2 + 4λ2U∗U

}

4 . . .which quantum physicists used to call—some still call—the “secular
equation.” Max Jammer’s remarks in this regard (Conceptual Development of
Quantum Mechanics, p. 215) are interesting: “Ironically, matrix mechanics, the
outcome of Heisenberg’s categorical rejection of orbits, had eventually to resort
to the mathematics of orbital motions. The very name [given to equations like
(5)] already testifies to the truth of this contention. For astronomers called an
equation of this type a ‘secular’ equation (from the Latin saeculum=generation,
saeculum civile=period of 100 years) as it enabled them to determine ‘secular’
(or long-period) disturbances of planetary orbits, as regards eccentricities and
inclinations about their mean values.”

5 I borrow here from my advanced quantum topics (), Chapter 1:
Two-state Systems, p. 39.
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which upon expansion in powers of λ gives

E1 = E0
1 + λE1

1 + λ2E2
1 + · · ·

= E0
1 + λV1 − λ2 U∗U

E0
2 − E0

1

+ · · ·

E2 = E0
2 + λE1

2 + λ2E2
2 + · · ·

= E0
2 + λV2 + λ2 U∗U

E0
2 − E0

1

+ · · ·




(8.1)

in the non-degenerate case E0
1 < E0

2 , and

E1 = E0 + 1
2λ

{
(V1 + V2) −

√
(V1 − V2)2 + 4U∗U

}
+ no terms of higher order

E2 = E0 + 1
2λ

{
(V1 + V2) +

√
(V1 − V2)2 + 4U∗U

}
+ no terms of higher order




(8.2)

when the unperturbed spectrum is degenerate: E0
1 = E0

2 ≡ E0. Notice that
(8.1) supplies

E1
1 = (1|V|1) and E2

1 =
(1|V|2)(2|V|1)

E0
1 − E0

2

=
2∑

m�=1

(1|V|m)(m|V|1)
E0

1 − E0
m

E1
2 = (2|V|2) and E2

2 =
(2|V|1)(1|V|2)

E0
2 − E0

1

=
2∑

m�=2

(2|V|m)(m|V|2)
E0

2 − E0
m




(9)

and so conforms precisely to (4). Notice also that we have recovered (4.2) by
direct analysis, without digressing to obtain descriptions of

{
|n1)

}
.

These results are gratifying, but somewhat academic. For if quantum
mechanical state space were 2-dimensional one would have no need of a
time-independent perturbation theory, the characteristic equation (5) being
then exactly soluable in all cases, by elementary means. We have shown that
the exact result can be written as though it had emerged from perturbation
theory, but that is a modest accomplishment. And to achieve it we played
unfairly: we took advantage at (7) of a capability (quadratic formula) which is
not available in the general case.

I show now how the argument can be reorganized so as to avoid the latter
criticism. Make the substitution E �→ E0

n + λE1
n + λ2E2

n + · · · in (6), expand in
powers of λ, and set equal to zero the coefficients of ascending order. Entrusting
the labor to Mathematica, we obtain

λ0 : (E0
n − E0

1)(E0
n − E0

2) = 0
λ1 : (2E0

n − E0
1 − E0

2)E1
n = (E0

n − E0
1)V2 + (E0

n − E0
2)V1

λ2 : (2E0
n − E0

1 − E0
2)E2

n = −(E1
n)2 + (V1 + V2)E1

n − (V1V2 − U∗U)
...
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which we proceed to solve serially: The λ0-equation gives

E0
n = E0

1 else E0
n = E0

2

The λ1-equation therefore supplies

E1
1 = V1 ≡ (1|V|1) else E1

2 = V2 ≡ (2|V|2)

and that information, when fed into the λ2-equation, gives

E2
1 = U∗U

E0
1 − E0

2

=
(1|V|2)(2|V|1)

E0
1 − E0

2

else E2
2 = U∗U

E0
2 − E0

1

=
(2|V|1)(1|V|2)

E0
2 − E0

1

In the degenerate case (E0
1 = E0

2 ≡ E0) the λ0-equation gives

E0
n = E0

The λ1-equation now collapses into uninformative triviality (0 = 0), and the
λ2-equation becomes

0 = −(E1)2 + E1(V1 + V2) − (V1V2 − U∗U) (10)

giving
E1 = E0 + 1

2λ
{

(V1 + V2) ±
√

(V1 − V2)2 + 4U∗U
}

in precise agreement with (8.2). We have, in fact, managed to reproduce all of
our former results without drawing upon the quadratic formula.6

Preparation for dimensional generalization. A long first step in that direction
was taken by the argument just completed—an argument which places us in
position to compute perturbed roots of characteristic equations of arbitrary
order. But how are we to obtain the characteristic equation? How are we to
evaluate det(H

0 + λV − E I) when N is large, and what meaning are we to
assign to that expression as N → ∞?

In the unperturbed eigenbasis H
0 is diagonal, so we have

det(H
0 + λV − E I) = det(H

0 − E I) · det(I + λM) (11)

M ≡ (H
0 − E I)–1

V

det(H
0 − E I) =

N∏
n=1

(En − E )

and attention shifts to the description of det(I+λM). Look to the 2-dimensional

6 I do not consider its use in connection with (10) to be in violation of that
statement, but rather to be an extension of the calculation which originally
gave us E0

1 and E0
2 .
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case, where
det(I + λM) = 1 + λ tr M + λ2 det M

Observe that
(tr M)2 = M2

11 + 2M11M22 + M2
22

tr M
2 = M2

11 + 2M12M21 + M2
22

so

det M = M11M22 −M12M21 = 1
2

{
(tr M)2 − tr M

2
}

= 1
2!λ

2

∣∣∣∣ trM trM
2

1 trM

∣∣∣∣
which we use to obtain

det(I + λM) = 1 + λ tr M + 1
2!λ

2

∣∣∣∣ trM trM
2

1 trM

∣∣∣∣ (12)

This pretty statement is a truncated instance of a remarkable identity which
deserves to be much better known, and which in higher-dimensional cases
continues

det(I + λM) = 1 + λT1 + 1
2!λ

2

∣∣∣∣T1 T2

1 T1

∣∣∣∣ + 1
3!λ

3

∣∣∣∣∣∣
T1 T2 T3

1 T1 T2

0 2 T1

∣∣∣∣∣∣ (13)

+ 1
4!λ

4

∣∣∣∣∣∣∣
T1 T2 T3 T4

1 T1 T2 T3

0 2 T1 T2

0 0 3 T1

∣∣∣∣∣∣∣ + · · ·

≡ ∆0 + λ∆1 + 1
2!λ

2∆2 + 1
3!λ

3∆3 + 1
4!λ

4∆4 + · · · (14)

with Tp ≡ trM
p. One discovers experimentally, and can readily prove, that

∆0 = 1
∆1 = T1

∆2 = T1∆1 − T2

∆3 = T1∆2 − 2T2∆1 + 2T3

∆4 = T1∆3 − 3T2∆2 + 6T3∆1 − 6T4

∆5 = T1∆4 − 4T2∆3 + 12T3∆2 − 24T4∆1 + 24T5

∆6 = T1∆5 − 5T2∆4 + 20T3∆3 − 60T4∆2 + 120T5∆1 − 120T6

...

∆n =
n∑

k=1

(−)k+1 (n−1)!
(n−k)! Tk ∆n−k (15)
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and by iteration we are led to the following explicit descriptions of the first few
∆-factors:

∆0 = 1
∆1 = T1

∆2 = T 2
1 − T2

∆3 = T 3
1 − 3T1T2 + 2T3

∆4 = T 4
1 − 6T 2

1 T2 + 8T1T3 + 3T 2
2 − 6T4

∆5 = T 5
1 − 10T 3

1 T2 + 20T 2
1 T3 + 15T1(T 2

2 − 4T4) − 20T2T3 + 24T5

...




(16)

These results Mathematica has confirmed by direct evaluation of the relevant
determinants. Slight recasting of (12) gives

ϕ(ω) = det(M − ωI) = ω2 − T1ω + 1
2! (T

2
1 − T2)

= ∆0ω
2−0 − 1

1!∆1ω
2−1 + 1

2!∆2ω
2−2

By the Cayley-Hamilton theorem ϕ(M) = O. Multiply by M and take the
trace, to obtain T3 − T1T2 + 1

2 (T 3
1 − T1T2) = 1

2∆3 = 0. An easy extension of
the argument (which makes critical use of (15)) serves to establish that

∆N+1 = ∆N+2 = ∆N+3 = · · · = 0 in the N -dimensional case

and thus to explain why the 2-dimensional statement (12) presents an instance
of (13) that truncates at 2nd order.

For the derivation of (13) I must refer to other sources,7 but will sketch its
principal features. Write

det(I + λM) = etr
{
log(I + λM)

}
log(I + λM) ≡ λM− 1

2 (λM)2 + 1
3 (λM)3− 1

4 (λM)4 + · · ·

= eλT1− 1
2 λ2 T2+

1
3 λ3 T3− 1

4 λ4 T4+ ···

≡ eg(λ)

=
∑

1
n!λ

n
[(

d
dλ

)n
eg(λ)

]
λ=0

Success hinges on one’s ability to compute the nth derivative of a composite
function f(g(λ)). I learned to do so from Advanced Problem No. 4782 which
V.F.Ivanoff submitted to the American Mathematical Monthly (65, 212 (1958)),
but according to Abramowitz & Stegun (24.1.2) the basic formula is due to
one Faà di Bruno (about whom I have been able to discover nothing . . .but see
below!), and is presumably ancient. It is, in any event, this final step that gives
birth to the triangular determinants ∆n.

7 See, for example, “Applications of an elegant formula due to V. F. Ivanoff”
in collected seminars –; pp. 27–30 in quantum perturbations
(); or “A mathematical note: Algorithm for the efficient evaluation of the
trace of the inverse of a matrix” ().
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The identity (13) possesses a number of remarkable properties (for example:
it simplifies markedly if M is antisymmetric; also if M is projective), but the
feature to which I now draw special attention is that the coefficients (once
“switched on” by the condition N � order) retain their structure as N ascends.
Which means (if we set aside all questions having to do with convergence) that
(13) remains meaningful even in the limit N → ∞ ! 8

Finer details. Looking back again to (11), we are reminded that in the present
application

M =
∥∥∥∥ Vij

Ei − E

∥∥∥∥ therefore M
2 =

∥∥∥∥ VijVjk

(Ei − E)(Ej − E)

∥∥∥∥
M

3 =
∥∥∥∥ VijVjkVk�

(Ei − E)(Ej − E)(E� − E)

∥∥∥∥ , etc.

which give

T1(E) =
∑

i

Vii

Ei − E
(17.1)

T2(E) =
∑
ij

VijVji

(Ei − E)(Ej − E)
(17.2)

T3(E) =
∑
ijk

VijVjkVki

(Ei − E)(Ej − E)(Ek − E)
(17.3)

...
8 Having completed that sentence, I headed home for the evening . . . ran

into retired colleague Dennis Hoffman and his wife Carol on one of their daily
promanades . . .mentioned that I had been trying unsuccessfully since 
to learn something about the life of Faà di Bruno, and challenged Dennis
to find trace of the man on the World Wide Web. Early the next morning
Dennis appeared in my office, bearing many pages of text, from which I extract
this information: Francesco Faà di Bruno (–) studied at the Royal
Military Academy of Turin and served as an officer in the Sardinian Army from
 until, in , he decided to leave the army and take up the study of
mathematics. At the Sorbonne he studied under Cauchy, and was a classmate
and friend of both Hermite and Leverrier (co-discoverer of Neptune). He took
his doctorate from the University of Turin, and served on the faculty there from
 until the time of his death. In  he was appointed to the Chair of Higher
Analysis, but also in that same year he was ordained a Roman Catholic priest.
In the latter capacity he established a religious order to attend to the needs of
girls resident in an orphanage called Conservatorio del Suffragio. To keep the
girls occupied he acquired a printing press and set up Tipographia Suffragio,
a publishing house specializing in mathematical texts, which the girls served
as typesetters. Faà di Bruno was declared a Saint by Pope John Paul II in
. His mathematical work treated the theory and applications of elliptic
functions, the theory of errors, and (most famously) the theory of binary forms.
The formula which inspires my interest in him was developed fairly early in his
career, and reportedly appears in his Traite Elementaire du Calcul ().
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Those functions, thought of as functions of a complex variable E, have poles
strung along the real axis—poles situated at points specified by the unperturbed
spectrum

{
E1, E2, . . .

}
. Those are precisely the points at which

P (E) ≡ det(H
0 − E I) =

N∏
i=1

(Ei − E )

=
{∏

i

Ei

}
·
{∏

i

(
1 − E

Ei

)}

—the first of the factors to which (11) directed our attention—vanishes. We
stand evidently in prospect of some delicate cancellations.

Consider, for a moment, the object P (E). When N is finite it is simply a
polynomial with specified zeros. But in the limit N → ∞ it—for most spectra{
E1, E2, . . .

}
of physical interest—fails to converge, so might be described as

“an absurdity with specified zeros.” One might, for present purposes, abandon
the

∏
Ei -factor, and try to get some mileage out of what Weierstrass had to

say9 about the relatively convergent construction
∏

(1 − E/Ei), but I won’t
go down that road; I will instead look upon P (E) as a formal repository of
unperturbed spectral data, and take interest in how the latent pathologies heal
themselves in the intended application.

We have need of the construction

P (E0 + λE1 + λ2E2 + · · ·) = P (E0) + λP (E0, E1) + λ2P (E0, E1, E2) + · · ·
= P0 + λP1 + λ2P2 + λ3P3 + · · ·

where
P0 ≡ P (E0) = Π0(E0) ≡

∏
(Ei − E0) (18.0)

To obtain P1 ≡ P (E0, E1) we write

(((E1−E0−λE1−λ2E2−···)))(((E2−E0−λE1−λ2E2−···)))(((E3−E0−λE1−λ2E2−···)))· · ·· · ·· · ·

and • select an E1 in all possible ways
• set λ = 0 in all surviving factors; this gives

P (E0, E1) = −E1
∑

i

P (E0)
Ei − E0

which we abbreviate

P1 = −E1Π1 (18.1)
Π1(E0) ≡ sum over all ways of striking one factor from Π0

To obtain P2 ≡ P (E0, E1, E2) we first
• select E1 then another E1 in all possible ways, then
• select E2 in all possible ways, always setting λ = 0 in surviving factors.

9 See, for example, S. Lang, Complex Analysis (), Chapter 10, §2.
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To obtain P3 ≡ P (E0, E1, E2, E3) we first
• select E1 then another E1 then another E1 in all possible ways, then
• select E1 then E2 in all possible ways, then
• select E3 in all possible ways.

These procedures give

P (E0, E1, E2) = (−E1)2
∑
i<j

P (E0)
(Ei − E0)(Ej − E0)

+ (−E2)1
∑

i

P (E0)
(Ei − E0)


P2 = E1E1Π2 − E2Π1 (18.2)

Π2 ≡
{

sum over all distinct ways of
striking two factors from Π0

P (E0, E1, E2, E3) = (−E1)3
∑

i<j<k

P (E0)
(Ei − E0)(Ej − E0)(Ek − E0)

+ 2(−E1)1(−E2)1
∑
i<j

P (E0)
(Ei − E0)(Ej − E0)

+ (−E3)1
∑

i

P (E0)
(Ei − E0)


P3 = −E1E1E1Π3 + 2E1E2Π2 − E3Π1 (18.3)

To discover the terms that contribute to P (E0, E1, . . . , E n) one looks to the
partitions of n, which Mathematica is happy to supply: turn on the Add-On
Package

<<DiscreteMath`Combinatorica`

and ask for Partitions[4] to obtain

{{1,1,1,1}, {1,1,2}, {1,3}, {2,2}, {4}}

while PartitionsP[4] responds 5 in response to the question: “In how many
distinct ways can 4 be written as a sum of positive integers?” Giving names to
the sums which appear recurrently in (18), and drawing upn the information
just obtained, we find ourselves in position to continue the series:

P1 = −E1Π1(E0) (19.1)
P2 = E1E1Π2(E0) − E2Π1(E0) (19.2)
P3 = −E1E1E1Π3(E0) + 2E1E2Π2(E0) − E3Π1(E0) (19.3)
P4 = E1E1E1E1Π4(E0) − 3E1E1E2Π3(E0) (19.4)

+
{
2E1E3 + E2E2

}
Π2(E0) − E4Π1(E0)...
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In next higher order we encounter PartitionsP[5]=7 terms; they are{
1, 1, 1, 1, 1

}
{
1, 1, 1, 2

}
{
1, 1, 3

}
{
1, 2, 2

}
{
1, 4

}
{
2, 3

}
{
5
}

and with this information P5 ≡ P (E0, E1, E2, E3, E4, E5) almost writes itself.
But it would be senseless to continue the process very far, since

p(10) = 42, p(20) = 627, p(30) = 5604, p(40) = 37338

The series

P (E0 + λE1 + λ2E2 + · · ·) =
∑
k=0

λkP (E0, · · · , Ek) (20)

speaks falsely when k > N , but this is no problem in the limit N → ∞, and
no problem even for N > about 4 if we plan to do our perturbation theory in
realistic order. The boldface numerics evident in (19.3/4)—one was encountered
already at (18.3)—arise from the circumstance that
• E1E2 can be written in 2 distinct ways;
• E1E1E2 can be written in 3 distinct ways;
• E1E3 can be written in 2 distinct ways, etc.

They are, in short, multinomial coefficients. Generally

(E1 + E2 + · · · + Em)n =
∑

(n;n1, n2, . . . , nm)(E1)n1(E2)n2 · · · (Em)nm

where the sum ranges over all partitions of n into m parts

n = n1 + n2 + · · · + nm

and10

(n;n1, n2, . . . , nm) = number of distinct arrangements

=
(n1 + n2 + · · · + nm)!

n1!n2! · · ·nm!

In particular, we have (2; 1, 1) = 2!
1!1! = 2 and (3; 2, 1) = 3!

2!1! = 3, as reported
above. I have used Mathematica (a fairly tedious business it was!) to check—
through 4th-order in the case N = 5—the accuracy of the equation that results
when (19) is introduced into (20).

10 See Abramowitz & Stegun, 24.1.2. Mathematica produces multinomial
coefficients by command Multinomial[n1, n2, . . . , nm].
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Return now again to (17.1), from which we obtain

T1(E0 + λE1 + λ2E2 + · · ·) =
∑

i

Vii

Ei − E0

[
1 − λE1 + λ2E2 + · · ·

Ei − E0

]–1

Formally (meaning apart from the convergence question)[
etc.

]–1 = 1 + 1
(Ei − E0)

(λE1 + λ2E2 + · · ·)

+ 1
(Ei − E0)2

(λE1 + λ2E2 + · · ·)2 + · · ·

= 1 + λ
[

E1

D
i

]
+ λ2

[
E1E1

D2
i

+ E2

D
i

]
+ λ3

[
E1E1E1

D3
i

+ 222E1E2

D2
i

+ E3

D
i

]
+ λ4

[
E1E1E1E1

D4
i

+ 333E1E1E2

D3
i

+ E2E2+222E1E3

D2
i

+ E4

D
i

]
+ · · ·

into which the boldface numerics have intruded for the same reason as before,
and where we have adopted the abbreviation Di ≡ Ei −E0. Working similarly
from (17.2/3/· · ·) we find

T2(E0 + λE1 + λ2E2 + · · ·)

=
∑
ij

VijVji

DiDj

[
1 − λE1 + λ2E2 + · · ·

Di

]–1[
1 − λE1 + λ2E2 + · · ·

Dj

]–1

with
[
etc.

]–1

i

[
etc.

]–1

j
= 1 + λ

[
E1

D
i

+ E1

D
j

]
+ λ2

[
E1E1

D2
i

+ E2

D
i

+ E1E1

D2
j

+ E2

D
j

+ E1E1

D
i
D

j

]
+ λ3

[
E1E1E1

D3
i

+ 2E1E2

D2
i

+ E3

D
i

+E1E1E1

D3
j

+ 2E1E2

D2
j

+ E3

D
j

+E1

D
j

(
E1E1

D2
i

+ E2

D
i

)
+E1

D
i

(
E1E1

D2
j

+ E2

D
j

)]
+ · · ·

T3(E0 + λE1 + λ2E2 + · · ·)

=
∑
ijk

VijVjkVki

DiDjDk

[
1 − λE1 + λ2E2 + · · ·

Di

]–1[
1 − λE1 + λ2E2 + · · ·

Dj

]–1

·
[
1 − λE1 + λ2E2 + · · ·

Dk

]–1

with
[
etc.

]–1

i

[
etc.

]–1

j

[
etc.

]–1

k
=1 + λ

[
E1

D
i

+ (i �→ j, k)
]

+ λ2
[

E1E1

D2
i

+ E2

D
i

+ (i �→ j, k)

+E1E1

D
i
D

j
+ (ij �→ ik, jk)

]
+ λ3

[
E1E1E1

D3
i

+ 2E1E2

D2
i

+ E3

D
i

+ (i �→ j, k)

+E1

D
i

(
E1E1

D2
j

+ E2

D
j

)
+ (ij �→ ji, ik, ki, jk, kj)

+E1E1E1

D
i
D

j
D

k

]
+ · · ·
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and so forth; these results11 will be notated

Tn(E0 + λE1 + λ2E2 + · · ·) = Tn0(E0) + λ Tn1(E0, E1)

+ λ2Tn2(E0, E1, E2)

+ λ3Tn3(E0, E1, E2, E3) + · · ·
(21)

to emphasize an important shared feature of their design.

Principles of assembly & information extraction. Introducing (21) into (16) we
find

∆0 = 1

∆1 = T10 + λT11 + λ2T12 + λ3T13 + · · ·

∆2 = (T 2
10 − T20) + λ (2T10T11 − T21)

+ λ2(T 2
11 + 2T10T12 − T22)

+ λ3(2T11T12 + 2T10T13 − T23) + · · ·

∆3 = (T 3
10 − 3T10T20 + 2T30)

+ λ (3T 2
10T11 − 3T11T20 − T10T21 + 2T31)

+ λ2(3T 2
10T12 − 3T12T20 − 3T11T21

+ 3T10T
2
11 − 3T10T22 + 2T32) · · ·

...

Bringing this information to (14), we find that if

M =
∥∥∥∥ Vij

Ei − (E0 + λE1 + λ2E2 + · · ·)

∥∥∥∥
=

∥∥∥∥ Vij

Ei − E0

[
1 − λE1 + λ2E2 + · · ·

Ei − E0

]–1
∥∥∥∥

then

det(I + λM) = ∆0 + λ∆1 + λ2∆2 + · · ·
= 1 + λ T10

+ 1
2λ

2(T 2
10 + 2T11 − T20)

+ 1
6λ

3(T 3
10 + 6T12 + 6T10T11 − 3T10T20 − 3T21 + 2T30) + · · ·

This we use in (11)—i.e., in

det
(
H

0 + λV − (E0 + λE1 + λ2E2 + · · ·)I
)

= (P0 + λP1 + λ2P2 + · · ·) · det(I + λM) = 0

11 The expressions become rapidly more complicated as one ascends to higher
order, and efficient notation becomes increasingly a concern. But the work
would be assigned to a computer, so we are really talking here about the design
of efficient computer algorithms, not “efficient notation” in the classic sense.
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—to obtain

0 = P0 (22.0)
0 = P1 + P0T10 (22.1)
0 = P2 + P1T10 + 1

2P0(T 2
10 + 2T11 − T20) (22.2)

0 = P3 + P2T10 + 1
2P1(T 2

10 + 2T11 − T20)

+ 1
6P0(T 3

10 + 6T12 + 6T10T11 − 3T10T20 − 3T21 + 2T30) (22.3)
...

which we undertake to solve serially.

The 0th condition, when spelled out with the aid of (18.0), forces E0 to be
one or another of the unperturbed eigenvalues; we will set

E0 = En (23.0)

That brings about great simplifications that ripple downstream. First off, (23.0)
serves to kill all but one of the terms which enter summed into the definition
(18.1) of Π1; we therefore have

P1 = −E1
n

∏
k �=n

Dkn with Dkn ≡ Ek − En

Equation (22.1) therefore becomes

0 = −E1
n

∏
k �=n

Dkn +
∏

i

Din ·
∑

j

Vjj

Djn

= ditto +
∑

j

Vjj

∏
i �=j

Din

︸ ︷︷ ︸
0 unless j = n

=
{
− E1

n + Vnn

} ∏
k �=n

Dkn

which in the finite-dimensional case we can—and even in the ∞ -dimensional
will—interpret to mean that

E1
n = Vnn (23.1)

provided the unperturbed eigenvalue En is non-degenerate; in the contrary case
we have 0 = 0 and (as we saw already in the case N = 2) must look farther
downstream for the information required to evaluate E1

n .

But as we move downstream the principles of inclusion/exclusion implicit
in expressions of rapidly ascending complexity become increasingly difficult to
sort out. I have found it convenient to have at hand an explicit instance of what



16 New approach to time-independent perturbation theory

those principles are trying to tell us. So take N = 5, and let the unperturbed
eigenvalues be denoted

{
E1, E2, E3, E4, En

}
. Then12

Π0(En) =D1nD2nD3nD4nDnn

Π1(En) =D1nD2nD3nD4n + D1nD2nD3nDnn

+ D1nD2nD4nDnn

+ D1nD3nD4nDnn

+ D2nD3nD4nDnn

Π2(En) = D1nD2nD3n + D1nD2nD4n + D1nD3nD4n + D2nD3nD4n

+ D1nD2nDnn + D1nD3nDnn + D1nD4nDnn + D2nD3nDnn

+ D2nD4nDnn + D3nD4nDnn

Π3(En) = D1nD2n + D1nD3n + D1nD4n + D2nD3n + D2nD4n + D3nD4n

+ D1nDnn + D2nDnn + D3nDnn + D4nDnn

Π4(En) = D1n + D2n + D3n + D4n + Dnn

The terms with red factors vanish when they stand alone or are divided by Dkn,
but make non-vanishing contributions when divided by Dnn. We have already
seen this happen : (22.1), in the present expanded notation, reads

0 = −E1
n

{
(quartic term) + (cubic terms)Dnn

}

+ (quartic term)Dnn

{ ∑
i

Vii

Din
+

Vnn

Dnn

}

=
{
− E1

n + Vnn

}
︸ ︷︷ ︸ ·(quartic term)

0 unless spectral value En is degenerate: (quartic term) = 0

We look now in that same spirit to the implications of (22.2), which asks
us to add terms of five distinct types. I look to those terms separately:

first term: second order

P2 = (E1
n)2Π2(En) − E2

nΠ1(En) by (19.2)

= (E1
n)2

{
(cubic terms) + (quadratic terms)Dnn

}
− E2

n

{
(quartic term) + (cubic terms)Dnn

}
⇓
= (E1

n)2(cubic terms) − E2
n(quartic term)

12 The reader should be aware that in the electronic version of this text all
Dnn’s are red, and that I use blue to distinguish factors that come into being
as coefficients of Dnn from those that don’t.
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second term: second order

P1T10 = −E1
nΠ1(En)T01(En)

= −E1
n

{
(quartic term) + (cubic terms)Dnn

}{ ∑
i

Vii

Din
+

Vnn

Dnn

}
⇓
= −

{
E1

n(quartic term)
∑

i

Vii

Din
+ E1

nVnn(cubic terms)
}

− E1
nVnn

(quartic term)
Dnn

third term: second order

1
2P0T

2
10 = 1

2Π0(En)
[
T10(En)

]2
= 1

2 (quartic term)Dnn

[∑
i

Vii

Din
+

Vnn

Dnn

]2

= (stuff)Dnn + Vnn

∑
i

Vii
(quartic term)

Din
+ 1

2VnnVnn
(quartic term)

Dnn

⇓
= Vnn(quartic term)

∑
i

Vii

Din
+ 1

2VnnVnn
(quartic term)

Dnn

fourth term: second order

P0T11 = Π0(En)T11(En, E
1
n)

= (quartic term)Dnn

{
E1

n

∑
i

Vii

DinDin
+

E1
nVnn

DnnDnn

}

= (stuff)Dnn + E1
nVnn

(quartic term)
Dnn

⇓
= E1

nVnn
(quartic term)

Dnn

fifth term: second order

− 1
2P0T20 = − 1

2Π0(En)T20(En)
= − 1

2 (quartic term)Dnn

·
{ ∑

ij

VijVji

DinDjn
+ 2

∑
i

VniVin

DinDnn
+

VnnVnn

DnnDnn

}

= (stuff)Dnn − (quartic term)
∑

i

VniVin

Din
− 1

2VnnVnn
(quartic term)

Dnn

⇓
= −(quartic term)

∑
i

VniVin

Din
− 1

2VnnVnn
(quartic term)

Dnn
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Summing up those five terms, we are led from (22.2) to an equation of the form

0 =
∑

five terms

= good stuff
2

+ stuff
2,1

1
Dnn

Preserving the sequential order of the terms that contribute to the coefficient
of (Dnn)−1 we find

stuff
2,1

=
(
0 − 1 + 0 + 1 + 0

)
· (quartic term)E1

nVnn

+
(
0 + 0 + 1

2 + 0 − 1
2

)
· (quartic term)VnnVnn = 0

This result protects us from a catastrophy of class ∞1, and inspires some
confidence in the accuracy of our work. Look next to good stuff

2
, which

we find can be expressed13

good stuff
2

=(quartic)
{
− E2

n −
∑

i

VniVin

Din
−

[
E1

n − Vnn

] ∑
i

Vii

Din

}

+ (cubic)E1
n

[
E1

n − Vnn

]

In the non-degenerate case
[
E1

n−Vnn

]
= 0, and we led to the familiar 2nd-order

spectral correction formula14

E2
n = −

∑
i �=n

VniVin

E0
i − E0

n

(23.2)

I remarked earlier (see the text preceding (18)) that we would “take interest
in how the latent pathologies heal themselves.” The mechanism stands now
revealed: the potential embarrassment of an infinite 1/Dnn term was avoided
when a vanishing coefficient killed the term in question. The lesson—for which

13 It becomes important at this point to recognize that, while I found it
convenient to draw certain color-coded distinctions in the equations that (on
p.16) served to described Π0, Π1, etc., they are in all cases distinctions without
a difference: (cubic) and (cubic) refer to identitical expressions (namely, the
sum of all distinct third-order products of non-repeating factors that include
no Dnn), and the same can be said of (quadratic/quadratic), etc. Here and
henceforth I will abandon the blue ink when it obscures (instead of clarifies)
what’s going on.

14 See Griffiths, p. 226; Powell & Crassmann, p. 387. Notice that hermiticity
forces all numerators to be positive, and that if En refers to thet ground state
then so also are all denominators positive. One is brought thus to the familiar
conclusion that perturbation always serves in second order to lower the ground
state.
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a good rationale could be given—appears to be this: first complete all the
algebra, and only then turn on the condition Dnn �→ 0.

Look finally to the implications of (22.3), which—no small request!—asks
us to develop and sum terms of the following eleven species:

first term: third order

P3 = −(E1
n)3Π3 + 2E1

nE
2
nΠ2 − E3

nΠ1

= −(E1
n)3

{
(quadratic terms) + (linear terms)Dnn

}
+ 2E1

nE
2
n

{
(cubic terms) + (quadratic terms)Dnn

}
− E3

n

{
(quartic term) + (cubic terms)Dnn

}
⇓

= −(E1
n)3(quadratic terms) + 2E1

nE
2
n(cubic terms) − E3

n(quartic term)

second term: third order

P2T10 =
{

(E1
n)2Π2 − E2

nΠ1

}
T10

=
{

(E1
n)2

{
(cubic terms) + (quadratic terms)Dnn

}

− E2
n

{
(quartic term) + (cubic terms)Dnn

}}{ ∑
i

Vii

Din
+

Vnn

Dnn

}

⇓
=

{
(E1

n)2(cubic terms) − E2
n(quartic term)

} ∑
i

Vii

Din

+
{

(E1
n)2(quadratic terms) − E2

n(cubic terms)
}
Vnn

+
{

(E1
n)2(cubic terms) − E2

n(quartic term)
}
Vnn

1
Dnn
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third term: third order

1
2P1T

2
10 = − 1

2E
1
nΠ1T

2
10

= − 1
2E

1
n

{
(quartic term) + (cubic terms)Dnn

}[∑
i

Vii

Din
+

Vnn

Dnn

]2

⇓
= − 1

2E
1
n

{
(quartic term)

∑
ij

ViiVjj

DinDjn
+ (cubic terms)2Vnn

∑
i

Vii

Din

}

− 1
2E

1
n

{
(quartic term)2Vnn

∑
i

Vii

Din
+ (cubic terms)VnnVnn

}
1

Dnn

− 1
2E

1
n

{
(quartic term)VnnVnn

}
1

DnnDnn

fourth term: third order

P1T11 = −E1
nΠ1T11

= −E1
n

{
(quartic term) + (cubic terms)Dnn

}

· E1
n

{ ∑
i

Vii

DinDin
+

Vnn

DnnDnn

}

⇓
= −(E1

n)2
{

(quartic term)
∑

i

Vii

DinDin

}

− (E1
n)2

{
(cubic terms)Vnn

}
1

Dnn

− (E1
n)2

{
(quartic term)Vnn

}
1

DnnDnn
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fifth term: third order

− 1
2P1T20 = 1

2E
1
nΠ1T20

= 1
2E

1
n

{
(quartic term) + (cubic terms)Dnn

}

·
{ ∑

ij

VijVji

DinDjn
+ 2

∑
i

VniVin

DinDnn
+

VnnVnn

DnnDnn

}

⇓
= 1

2E
1
n

{
(quartic term)

∑
ij

VijVji

DinDjn
+ (cubic terms) 2

∑
i

VniVin

Din

}

+ 1
2E

1
n

{
(quartic term) 2

∑
i

VniVin

Din
+ (cubic terms)VnnVnn

}
1

Dnn

+ 1
2E

1
n

{
(quartic term)VnnVnn

}
1

DnnDnn

sixth term: third order

1
6P0T

3
10 = 1

6Π0T
3
10

= 1
6 (quartic term)Dnn

[∑
i

Vii

Din
+

Vnn

Dnn

]3

⇓
= 1

2

{
(quartic term)Vnn

∑
ij

ViiVjj

DinDjn

}

+ 1
2

{
(quartic term)VnnVnn

∑
i

Vii

Din

}
1

Dnn

+ 1
6

{
(quartic term)VnnVnnVnn

}
1

DnnDnn
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seventh term: third order

P0T12 = Π0T12

= (quartic term)Dnn

·
{

(E1
n)2

[∑
i

Vii

DinDinDin
+

Vnn

DnnDnnDnn

]

+ E2
n

[∑
i

Vii

DinDin
+

Vnn

DnnDnn

]}

⇓
=

{
(quartic term)E2

nVnn

}
1

Dnn

+
{

(quartic term)(E1
n)2Vnn

}
1

DnnDnn

eighth term: third order

P0T10T11 = Π0T10T11

= (quartic term)Dnn

{ ∑
i

Vii

Din
+

Vnn

Dnn

}

· E1
n

{ ∑
i

Vii

DinDin
+

Vnn

DnnDnn

}

⇓
=

{
(quartic term)E1

nVnn

∑
i

Vii

DinDin

}

+
{

(quartic term)E1
nVnn

∑
i

Vii

Din

}
1

Dnn

+
{

(quartic term)E1
nVnnVnn

}
1

DnnDnn
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ninth term: third order

− 1
2P0T10T20 = − 1

2Π0T10T20

= − 1
2 (quartic term)Dnn

{ ∑
i

Vii

Din
+

Vnn

Dnn

}

·
{ ∑

ij

VijVji

DinDjn
+ 2

∑
i

VniVin

DinDnn
+

VnnVnn

DnnDnn

}

⇓
= − 1

2 (quartic term)
{
Vnn

∑
ij

VijVji

DinDjn
+ 2

∑
i

Vii

Din
·
∑

j

VnjVjn

Djn

}

− 1
2 (quartic term)

{
2Vnn

∑
i

VniVin

Din
+ VnnVnn

∑
i

Vii

Din

}
1

Dnn

− 1
2 (quartic term)

{
VnnVnnVnn

}
1

DnnDnn

tenth term: third order

− 1
2P0T21 = − 1

2Π0T21

= − 1
2 (quartic term)Dnn

·
{ ∑

ij

VijVji

DinDjn

[
E1

n

Din
+

E1
n

Djn

]
+ 2

∑
i

VniVin

DinDnn

[
E1

n

Din
+

E1
n

Dnn

]

+ 2E1
nVnnVnn

1
DnnDnnDnn

}

⇓

= − 1
2 (quartic term)

{
2E1

n

∑
i

VniVin

DinDin

}

− 1
2 (quartic term)

{
2E1

n

∑
i

VniVin

Din

}
1

Dnn

− 1
2 (quartic term)

{
2E1

nVnnVnn

}
1

DnnDnn
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eleventh term: third order

1
3P0T30 = 1

3Π0T30

= 1
3 (quartic term)Dnn

·
{ ∑

ijk

VijVjkVki

DinDjnDkn
+ 3

∑
ij

VniVijVjn

DinDjnDnn

+ 3Vnn

∑
i

VniVin

DinDnnDnn
+

VnnVnnVnn

DnnDnnDnn

}

⇓

= (quartic term)
{ ∑

ij

VniVijVjn

DinDjn

}

+ (quartic term)
{
Vnn

∑
i

VniVin

Din

}
1

Dnn

+ 1
3 (quartic term)

{
VnnVnnVnn

}
1

DnnDnn
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Summing up those eleven terms, we are led from (22.3) to an equation of
the form

0 =
∑

eleven terms

= good stuff
3

+ stuff
3,1

1
Dnn

+ stuff
3,2

1
DnnDnn

Preserving the sequential order of the terms that contribute to the coefficient
of (Dnn)−2 we find

stuff
3,2

= 0 + 0 − 1
2E

1
n

{
(quartic term)VnnVnn

}

− (E1
n)2

{
(quartic term)Vnn

}

+ 1
2E

1
n

{
(quartic term)VnnVnn

}

+ 1
6

{
(quartic term)VnnVnnVnn

}

+
{

(quartic term)(E1
n)2Vnn

}

+
{

(quartic term)E1
nVnnVnn

}

− 1
2 (quartic term)

{
VnnVnnVnn

}

− 1
2 (quartic term)

{
2E1

nVnnVnn

}

+ 1
3 (quartic term)

{
VnnVnnVnn

}

The sum on the right presents terms of three types (which would collapse into
a single type if we were to draw upon E1

n = Vnn). Grouping terms according
to type, and presenting them in such a way as to preserve sequential order, we
find that stuff

3,2
can be described

(
0 + 0 + 0 + 0 + 0 + 1

6 + 0 + 0 − 1
2 + 0 + 1

3

)
· (quartic)VnnVnnVnn

+
(
0 + 0 − 1

2 + 0 + 1
2 + 0 + 0 + 1 + 0 − 1 + 0

)
· (quartic)E1

nVnnVnn

+
(
0 + 0 + 0 − 1 + 0 + 0 + 1 + 0 + 0 + 0 + 0

)
· (quartic)(E1

n)2Vnn

In short:
stuff

3,2
= 0

This result protects us from a catastrophy of class ∞2, and inspires increased
confidence in the accuracy of our work.
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Look now to the terms that enter as coefficients of (Dnn)−1:

stuff
3,1

= 0 +
{

(E1
n)2(cubic terms) − E2

n(quartic term)
}
Vnn

− 1
2E

1
n

{
(quartic term)2Vnn

∑
i

Vii

Din
+ (cubic terms)VnnVnn

}

− (E1
n)2

{
(cubic terms)Vnn

}

+ 1
2E

1
n

{
(quartic term) 2

∑
i

VniVin

Din
+ (cubic terms)VnnVnn

}

+ 1
2

{
(quartic term)VnnVnn

∑
i

Vii

Din

}

+
{

(quartic term)E2
nVnn

}

+
{

(quartic term)E1
nVnn

∑
i

Vii

Din

}

− 1
2 (quartic term)

{
2Vnn

∑
i

VniVin

Din
+ VnnVnn

∑
i

Vii

Din

}

− 1
2 (quartic term)

{
2E1

n

∑
i

VniVin

Din

}

+ (quartic term)
{
Vnn

∑
i

VniVin

Din

}

The sum on the right presents terms now of seven types (which would collapse
into three if we were to draw upon what we now know about E1

n and E2
n).

Again grouping terms according to type, and adhering to our former practice of
displaying terms in a manner which respects sequential order (and thus permits
us to tell where each term came from, how each cancellation comes about), we
find that stuff

3,1
can be described

(
0 − 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0

)
(quartic)VnnE

2
m

+
(
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 − 1 + 0 + 1

)
(quartic)Vnn

∑
i VniVin/Din

+
(
0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 − 1 + 0

)
(quartic)E1

n

∑
i VniVin/Din

+
(
0 + 1 + 0 − 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0

)
(cubic)Vnn(E1

n)2

+
(
0 + 0 − 1

2 + 0 + 1
2 + 0 + 0 + 0 + 0 + 0 + 0

)
(cubic)VnnVnnE

1
n

+
(
0 + 0 + 0 + 0 + 0 + 1

2 + 0 + 0 + 0 − 1
2 + 0

)
(quartic)VnnVnn

∑
i Vii/Din

+
(
0 + 0 − 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0

)
(quartic)VnnE

1
n

∑
i Vii/Din

In short:
stuff

3,1
= 0
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which protects us from a catastrophy of class ∞1. Notice that here once again
we were able to obtain detailed cancellation without drawing upon what we (in
the non-degenerate case) know about E1

n and E2
n.

I interpret stuff
2,1

= stuff
3,1

= stuff
3,2

= 0 to indicate that
were we to work out the detailed meaning of (22.n) we would in every case
obtain an equation of the design

PN + · · · = good stuff
N

+
N−1∑
k=1

stuff
N,k

(Dnn)−k = 0

and would in very case discover that, as a result of massive cancellation,

stuff
N,k

= 0

But I will not attempt to construct an explicit proof of a proposition the truth
of which is, after all, evident on other grounds.15

It is (in the non-degenerate case) from

good stuff
N
≡ QN(En, E

1
n, . . . , E

N

n ) = 0

that one undertakes to extract EN
n . We have already established that

Q1(E1
n) =

{
− E1

n + Vnn

}
·
∏
k �=n

(Ek − En)

Q2(E1
n, E

2
n) =

{
− E2

n −
∑

i

VniVin

Din

}
·
∏
k �=n

(Ek − En)

What do the results now in hand have to say about Q3(E1
n, E

2
n, E

3
n)? Collecting

the terms proportional to (Dnn)0 we find that good stuff
3

= 0 can be
expressed

15 The intricacy of the pattern of cancellations suggests that direct proof
would be quite difficult.
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0 = − (E1
n)3(quadratic) + 2E1

nE
2
n(cubic) − E3

n(quartic)

+
{

(E1
n)2(cubic) − E2

n(quartic)
} ∑

i

Vii

Din

+
{

(E1
n)2(quadratic) − E2

n(cubic)
}
Vnn

− 1
2E

1
n

{
(quartic)

∑
ij

ViiVjj

DinDjn
+ (cubic)2Vnn

∑
i

Vii

Din

}

− (E1
n)2

{
(quartic)

∑
i

Vii

DinDin

}

+ 1
2E

1
n

{
(quartic)

∑
ij

VijVji

DinDjn
+ (cubic) 2

∑
i

VniVin

Din

}

+ 1
2

{
(quartic)Vnn

∑
ij

ViiVjj

DinDjn

}

+ 0

+
{

(quartic)E1
nVnn

∑
i

Vii

DinDin

}

− 1
2 (quartic)

{
Vnn

∑
ij

VijVji

DinDjn
+ 2

∑
i

Vii

Din
·
∑

j

VnjVjn

Djn

}

− 1
2 (quartic)

{
2E1

n

∑
i

VniVin

DinDin

}

+ (quartic)
{ ∑

ij

VniVijVjn

DinDjn

}

Collecting together the quadratic terms, we have

(quadratic) · (E1
n)2

[
− E1

n + Vnn

]

which vanishes in consequence of what is already known about E1
n. Similarly we

have

(cubic) ·
{
E2

n

[
E1

n − Vnn

]
+ E1

n

[
E2

n +
∑

i

VniVin

Din

]
+ E1

n

[
E1

n − Vnn

] ∑
i

Vii

Din

}

which vanishes in consequence of what is already known about E1
n and E2

n. The
surviving terms are all proportional to (quartic): after some reorganization we
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are led to a result which can be written

good stuff
3

=
{
− E3

n +
∑
ij

VniVijVjn

DinDjn
− E1

n

∑
i

VniVin

DinDin

−
[
E2

n +
∑

i

VniVin

Din

]∑
k

Vkk

Dkn

− E1
n

[
E1

n − Vnn

] ∑
k

Vkk

DknDkn

+ 1
2

[
E1

n − Vnn

] ∑
ij

VijVji − ViiVjj

DinDjn

}
·
∏
k �=n

(Ek − En)

≡ Q3(E1
n, E

2
n, E

3
n )

If En is non-degenerate (i.e., if
∏

k �=n(Ek − En) �= 0) then the factors
[
etc.

]
vanish, and from Q3 = 0 we obtain

E3
n =

∑
i, j �=n

VniVijVjn

DinDjn
− E1

n ·
∑
i �=n

VniVin

DinDin
(23.3)

To recapitulate: we have (with labor) found that when spelled out in detail
the meanings of (22) can, in the non-degenerate case, be expressed

0 =(quartic)
[
E1

n − Vnn

]
(24.1)

0 =(quartic)
{
− E2

n −
∑

i

VniVin

Din
−

[
E1

n − Vnn

] ∑
i

Vii

Din

}
(24.2)

+ (cubic)E1
n

[
E1

n − Vnn

]

0 =(quartic)
{
− E3

n +
∑
ij

VniVijVjn

DinDjn
− E1

n

∑
i

VniVin

DinDin
(24.3)

−
[
E2

n +
∑

i

VniVin

Din

]∑
k

Vkk

Dkn

−
[
E1

n − Vnn

](
E1

n

∑
k

Vkk

DknDkn
− 1

2

∑
ij

VijVji − ViiVjj

DinDjn

)}

+ (cubic)
{[

E2
n +

∑
i

VniVin

Din

]
E1

n

+
[
E1

n − Vnn

](
E2

n + E1
n

∑
i

Vii

Din

)}

− (quadratic)
{[

E1
n − Vnn

]
(E1

n)2
}

...
0 = expressions of ascending order and complexity
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These equations comprise—in the non-degenerate case—the principal fruit
of the present formalism. We see that (24.1) is, in effect, a description of E1

n,
and sends simplifications rippling downstream . . .with the result that (24.2)
becomes simply a description of E2

n, and dispatches further simplifications;
(24.3) becomes a description of E3

n, etc. Were I interested in E4
n I would sidestep

the heavy computation that goes into the demonstration that

stuff
4,1

= stuff
4,2

= stuff
4,3

= 0

and concentrate quartic component of good stuff
4
. A vast amount of

computational labor would thus be avoided.16

But if the unperturbed eigenvalue En is degenerate then (24.1) collapses
into uninformative triviality, and the the downstream quartic terms—which
a moment ago bore the full burden—all disappear. The burden of supplying
information about E1

n, E2
n, . . . falls to terms which in the non-degenerate case

were found to be quiescent. I turn now to discussion of how this comes about.

Management of spectral degeneracy. In degenerate cases the perturbation
theory of Rayleigh-Schrödinger tends (in my eccentric view) to degenerate
into an off-putting mess. I for a while entertained the hope that the present
formalism—because it obviates any need to be concerned with perturbed
eigenvectors—would in this problem area present distinct advantages. It does
not: the best that can be said is that it presents us with a (somewhat) different
mess.

An instance of the line of argument to which the present formalism gives
rise was encountered already when the 2-state theory led us to (10); here I
undertake to enlarge upon the lesson of that example. In an effort to keep
simple things simple I make use once again of the explicit language that becomes
available when one assumes state space to be 5-dimensional.

Let us for the moment assume that the unperturbed spectrum, which had
formerly the design

{
E1, E2, E3, E4, En

}
, has assumed the singly-degenerate

design {
E1, E2, E3, Em, En

}
with Em = En

Then Dmn (formerly written D4n) vanishes, which kills all previous “quartic”
factors; kills also some of the terms which formerly contributed to the
definitions of “cubic,” “quadratic,” “linear;” and introduces a singularity into all
previous summands. Those circumstances, as will emerge, cause information to
shift about—to “percolate”—amongst the terms in preceding expressions, and
some new information to come to rest in terms called new good stuff .
The death of “quartic” means (as will soon become apparent) that control has
been inherited by somebody named “new cubic,” whom I now introduce:

16 Note added on  September : Oz Bonfim has today informed me that
(23.3) is presented as Problem 2 on page 136 of the 3rd edition () of Landau
& Lifshitz’ Quantum Mechanics. It does not appear in earlier editions.
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Working from the top of p. 16, we find17

(quartic) ≡ D1nD2nD3nD4n

↓
= D1nD2nD3nD

≡ (new cubic)D
(cubic) ≡ D1nD2nD3n + D1nD2nD4n + D1nD3nD4n

↓
= D1nD2nD3n + D1nD2nD + D1nD3nD

≡ (new cubic) + (new quadratic)D
(quadratic) ≡ D1nD2n + D1nD3n + D2nD3n + D1nD4n + D2nD4n + D3nD4n

↓
= D1nD2n + D1nD3n + D2nD3n + D1nD + D2nD + D3nD

≡ (new quadratic) + (new linear)D

where now all subscripts n could as well be written m . Note, however, that this
is not true when the subscripts decorate V .

Look to the 2nd-order consequences of these adjustments. Reading from
pp. 16–17 we find (after omission of all final terms proportional to D = 0)

first term: second order

↓
(E1

n)2
{

(new cubic + (new quadratic)D
}
− E2

n(new cubic)D

= (new cubic)(E1
n)2

second term: second order

↓

= −
{
E1

n(new cubic)D
[∑

i

Vii

Din
+

Vmm

D

]
+ E1

nVnn(new cubic)
}

− E1
nVnn

(new cubic)D
D

= −(new cubic)
{
E1

nVmm + 2E1
nVnn

}

third term: second order

↓

= Vnn(new cubic)D
[∑

i

Vii

Din
+

Vmm

D

]
+ 1

2VnnVnn
(new cubic)D

D

= (new cubic)
(
VmmVnn + 1

2VnnVnn

)

17 In place of Dmm = Dnn I will henceforth write simply D.
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fourth term: second order

↓

= E1
nVnn

(new cubic)D
D

= (new cubic)E1
nVnn

fifth term: second order

↓

= −(new cubic)D
[∑

i

VniVin

Din
+

VnmVmn

D

]
− 1

2VnnVnn
(new cubic)D

D

= −(new cubic)
{
VnmVmn + 1

2VnnVnn

}

Summing up the preceding expressions, we are led to write

0 =
∑

five terms

= (new cubic) ·
{

(E1
n)2 − (((Vmm + Vnn)))E1

n + (((VmmVnn − VmnVnm)))
}

But if, as we have assumed, “new cubic” �= 0 this amounts simply to the
assertion that

det
(
Vmm−E1

n Vmn

Vnm Vnn−E1
n

)
= 0 (25)

In the contrary case the 2nd-order equation (22.2) collapses into triviality
and we must look farther downstream to obtain information about E1

n. For
example, in cases of the type

{
E1, E2, E�, Em, En

}
with E� = Em = En

we expect to obtain

det


 V��−E1

n V�m V�n

Vm� Vmm−E1
n Vmn

Vn� Vnm Vnn−E1
n


 = 0

We must look to at least 3rd-order to resolve the degeneracy if the roots of
(25) are coincident (as may happen), while if they are distinct we must look to
3rd-order to obtain information about E2

n. The list of possible circumstances
proliferates rapidly; I will pursue none of the details, since the method by which
they would be pursued is by now clear.
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Two classes of simplifying special assumptions. From the hermiticity of V it
follows in the most general case that

V = (real symmetric S) + (imaginary antisymmetric A)

We look to the class of cases in which S vanishes; i.e., in which

V is antisymmetric : V
T = −V

In such cases we have
trVp = 0 : p odd (26)

The antisymmetry of V does not imply antisymmetry of matrix

M ≡ DV : D ≡ (H
0 − E I)–1 is diagonal

introduced at (11). But (26) nevertheless persists

Tp ≡ trM
p = 0 : p odd (27)

as a special instance of the following more general proposition: from symmetric
S and antisymmetric A construct [(SA)p] T = (−)p

A(SA)p−1
S , then use general

properties of the trace18 to obtain tr(SA)p = (−)p tr(SA)p = 0 if p is odd. At
(13) we in antisymmetric cases have

∣∣∣∣∣∣∣∣∣∣∣

T1 T2 T3 T4 T5 T6

1 T1 T2 T3 T4 T5

0 2 T1 T2 T3 T4

0 0 3 T1 T2 T3

0 0 0 4 T1 T2

0 0 0 0 5 T1

∣∣∣∣∣∣∣∣∣∣∣
−→

∣∣∣∣∣∣∣∣∣∣∣

0 T2 0 T4 0 T6

1 0 T2 0 T4 0
0 2 0 T2 0 T4

0 0 3 0 T2 0
0 0 0 4 0 T2

0 0 0 0 5 0

∣∣∣∣∣∣∣∣∣∣∣
which causes fairly dramatic simplifications (see, for example, what happens to
(16): evidently ∆odd = 0) to propagate throughout the theory. In place of (22)
we have

0 = P0

0 = P1

0 = P2 − 1
2P0T20

0 = P3 − 1
2P1T20 − 1

2P0T21

...

From (23.1) we learn that

If V is antisymmetric then E1
n = 0: the leading

spectral adjustment is of 2nd order.

18 tr X
T = tr X and tr XY = tr YX.
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This last circumstance brings to mind some aspects of the quantum theory of
the Stark effect, but the cleanest example of a system with “antisymmetric
perturbation” is provided by the perturbed harmonic oscillator:

H = 1
2m p2 + 1

2mω2 x2 + λ
√

2�ω
m p

since relative to the unperturbed oscillator eigenbasis
{
|n)

}
one has19

‖(m|p |n)‖ = i
√

m�ω/2




0 −
√

1 0 0 0
. . .

+
√

1 0 −
√

2 0 0
. . .

0 +
√

2 0 −
√

3 0
. . .

0 0 +
√

3 0 −
√

4
. . .

0 0 0 +
√

4 0
. . .

. . . . . . . . . . . . . . . . . .




Even more dramatic are the simplifications which result when V possesses
the projective form

V = |V )(V | (28)

characteristic of what is called “pair theory.”20 For then a simple argument
gives

tr M
p = (tr M)p

tr M =
∑
m,n

(m|(H0 − E I )–1|n)(n|V )(V |m) =
∑

n

|(n|V )|2
En−E

so we have

det(I + λM) = etr log( I+λM )

= elog(1+λtrM )

= 1 + λ
∑

n

|(n|V )|2
En−E

Our problem, therefore, is to locate the zeros of

f(E) ≡
{

1 + λ
∑

i

|(i |V )|2
Ei−E

}
·
∏
j

(Ej − E)

19 See, for example, A. Massian, Quantum Mechanics (), Chapter 12, §5.
20 E. M. Henley & W. Thirring devote Chapters 11 & 12 of their Elementary

Quantum Field Theory () to this subject (which I have stripped to the bare
bones), and give references to the physical literature. The subject is treated
also on pp. 21–30 in my quantum perturbations.3



Conclusions & prospects 35

This we would do by expanding f(En +λE1
n +λ2E2

n + · · ·) as an explicit power
series in λ and then undertaking to solve serially the equations that result from
setting the coefficients equal to zero. I have developed the details elsewhere,
so will not repeat them here. This much, however, is clear: the computational
program that ensues is a great deal simpler than the program—developed in
these pages—to which one is committed when the condition (28) is absent.

Concluding remarks and prospects. The preceding material sprang from a seed
accidentally turned up by my plow while preparing some recent “lectures on
advanced quantum mechanics.” On the last day of class I returned to the topic
in the naive expectation that a write-up might run to six or eight pages. That
“naive expectation” was based on the—mistaken—thought that “perturbation
theory is a simple subject, made traditionally more complicated than it need be
by a computational scheme that requires one to answer questions one had not
intended to ask.” I come away with the impression that perturbation theory
is in fact a subject of intrinsic complexity: labor to make it simple in this
respect, and it becomes complicated in that one. One can say simple things
complicatedly, but of a kind of economic necessity there can be no way to say
complicated things simply.

To the critic who objects that I have constructed a mere tour de force—
and that to no real purpose—I have no very convincing response. For (i) data
seldom supports an interest in high-order perturbation theory, and (ii) if it did,
people would by now (by whatever means) have developed the relevant formulæ
and written them down in books, there to be consulted as needed (no need to
perpetually rederive such formulæ). Besides, the heavy labor is associated
not so much with the production of formulæ as with the exact/approximate
description of the matrix elements that must, in each physical instance, be
inserted into them, and with the evaluation of the resulting sums. It is, I have
to admit, a little bit precious to be concerned (as I have been) exclusively with
the production of formulæ, and not at all with their practical use.

Yet it does seem to me to be of methodological interest—and potentially of
relevance to work having nothing at all to do with perturbation theory—that
we have been able
• construct a workable theory of ∞-dimensional determinants;
• say things about the roots of a “polynomial” of infinite order;
• develop a theory of perturbed spectra that avoids all reference to perturbed

states.

I have been working things out as I went along, and could not have done
the work without the cut/paste resources of Textures (the Blue Sky Research
implementation of TEX). I presume of my reader that he/she has the good sense
to skip the overwhelming detail, which I have allowed to remain for one reason:
the whole theory has a distinctly “algorithmic” quality, and all the labor should
ideally be assigned to a computer. I have been writing with an eye to the needs
of the student who I hope one day will undertake that project.


